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Abstract

A major challenge in designing machine learning systems for the real world is the sim2real
gap, i.e. the change in performance when the system is transferred from simulation to the
physical environment. Although many algorithms have been proposed to reduce this gap, it
is not well understood. In this paper, we perform an empirical study of the sim2real gap for
popular models in three standard computer vision tasks, monocular depth estimation, object
detection, and image inpainting, in a robotic manipulation environment. We find that the
lighting conditions significantly a�ect the gap for monocular depth estimation while object
properties a�ect the gap for object detection and image inpainting, and these qualitative
observations remain stable with di�erent models and renderers.

1 Introduction

The goal of artificial intelligence is to create machines that can perform tasks in the real world. In early
days of the field, behaviors were usually programmed into the machine. The field has since moved to a
more data-driven paradigm, where the mapping from sensor data to action is learned. Doing so reduces the
amount of domain knowledge that is needed but increases the number of necessary interactions with the real
world, which creates additional challenges.

Collecting real world interactions is costly, both in terms of time and money, as robots must be reset at the
end of each episode and may break if too many failures are encountered. A popular alternative approach is to
create a simulation of the environment and robot and generate lots of interactions by running the simulation
in parallel. However, when an agent learned in simulation is transferred to act in the real world, there is
often a di�erence in performance because the simulation may not capture all aspects of the environment
that are important for the task, even though practitioners take care to replicate the real world environment
in the simulator. This di�erence is called the simulation-to-reality (sim2real) gap, and is often dealt with by
training a robust and generalized agent on a large and diverse dataset (Zhao et al., 2020; Höfer et al., 2020)
and validating the agent on diverse scenarios that are more realistic than those seen during training (Grau
et al., 2022; Hagn & Grau, 2022).

To help guide this approach, we present a controlled experimental study to investigate the components of the
sim2real gap, i.e. what environmental characteristics have the greatest e�ect on it. In doing so, we contribute
a rigorous definition of the sim2real gap (Section 3). The conclusions would be relevant for designing both
training and validation scenarios in simulation and in the real world. For example, if the number of cars on
the road is shown to a�ect the gap for an autonomous driving system, the scenarios should include scenes
on lonely country roads as well as busy city streets.

Intelligent agents consist of two modules: 1) perception, which gathers information about the environment
and processes / analyzes it, and 2) control, which uses those results to select and carry out an action in the
environment (Russell & Norvig, 2002). In this paper, we focus on the perception part, where the sensor is
a RGB image; due to the ubiquity of cameras, many robotics pipelines are using perception from images.
Specifically, we study the sim2real gap for three computer vision tasks applicable to robotics: 1) monocular
depth estimation, 2) object detection, and 3) image inpainting.
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We consider a robotic manipulation environment as the confined space makes it easier to control the various
environmental characteristics. The environment consists of a robot manipulator on a pedestal next to
a table with objects on it. We collect a dataset of RGBD images, randomizing various environmental
characteristics of interest (such as lighting conditions and object properties). After creating a simulated
version of the environment that closely approximates the physical environment, we generate RGBD images
from the simulation that correspond to the real world images (Section 4). The paired RGBD images are
then used to estimate the sim2real gaps for popular, SoTA models for the three tasks and statistical analysis
is done to compute which environmental factors a�ect the gaps (Sections 3 and 5).

Our conclusions are task-dependent. The simulation underestimates the performance of the MiDaS DPT-
Hybrid (monocular depth estimation) and EVA-LVIS (object detection) models but overestimates that of the
LaMa (image inpainting) model. The light temperature and position a�ects the sim2real gap in monocular
depth estimation, object geometry and texture a�ect the sim2real gap in object detection, and object texture
a�ect the sim2real gap in image inpainting. The conclusions are also robust; for monocular depth estimation,
if a di�erent model or renderer is used, it remains that light properties a�ect the gap more strongly than object
properties. Therefore, robotic systems whose perception modules contain a monocular depth estimation
model should be validated with a wide variety of lighting conditions, while those containing an object
detection model or image inpainting model should be validated with a wide variety of objects.

2 Related work

Addressing the gap There have been many algorithms proposed to decrease the sim2real gap (Zhao et al.,
2020; Höfer et al., 2020), with popular types of approaches being photo-realism, physical realism, domain
randomization, and domain adaptation. Photo-realism and physical realism attempts to directly reduce the
gap by making the geometry, materials, lighting, and physics in the simulator more closely resemble the
real world, often utilizing hand-design and leveraging existing game engines (Martinez-Gonzalez et al., 2020;
Roberts et al., 2022). Hagn & Grau (2022) takes it one step further by introducing errors into the simulator
that decreases the distance between simulated and real world images.

Domain randomization and domain adaptation, aimed towards the agent rather than the simulator, generate
data from varying simulator parameters (domains). Domain randomization aims to learn an agent that is
robust to the gap by maximizing performance on a wide range of domains (Tobin et al., 2017; Muratore
et al., 2022). On the other hand, domain adaptation enables the agent to ingest data from the domain at
hand and adapt on-the-fly by utilizing domain-invariant features (Bousmalis et al., 2018; James et al., 2019)
or features that can identify the domain (Beck et al., 2023). Another line of work proposes to utilize an
estimate of the sim2real gap as a secondary learning signal, where the prediction is made by limited queries
to the real world environment (Koos et al., 2013) or unseen domains (Muratore et al., 2021).

A common characteristic of a majority of methods is that they require identifying axes of variation in
the environment and task that a�ect the sim2real gap. This is often done by intuition, but knowing what
variations are most important would be useful for future work on the topic, e.g. what aspects of the simulator
should be made more realistic.

Understanding the gap Currently, our understanding of the sim2real gap appears to be primarily based
on experience from transferring an agent trained in simulation to reality. According to Höfer et al. (2020),
simulator physics for contact-rich tasks do not yet have high enough fidelity for domain randomization
to work well, and e�ective sim2real algorithms for depth estimation require high-quality CAD models.
Alghonaim & Johns (2021) identifies textures and background to be most important to randomize during
domain randomization for pose estimation, but does not directly study the gap. In a similar vein, Sudhakar
et al. (2023) studies the e�ect of introducing lighting variation and noise in object geometry and texture
during training for object detection and instance segmentation and finds that noise in object geometry is the
most important.

Some recent work has quantified the sim2real gap by measuring the change in performance when transferring
an agent trained in simulation to reality, taking care that the simulation test environment approximates
reality as much as possible (Stocco et al., 2022; Dieter et al., 2023). For example, Anderson et al. (2021)
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and Kadian et al. (2020) create a 3D scan of the real world environment in simulation using a Matterport
camera. Taking this one step further, Jaunet et al. (2021) provides a tool for visualizing the sim2real gap
in an ego-localization task, highlighting areas of the map where the gap is largest and plotting the model
features at those areas.

The works most similar in spirit to ours are Collins et al. (2019), which studies the fidelity of various
simulators for modeling di�erent types of robot arm motion, Rosser et al. (2020), which hypothesizes that
certain morphology details a�ect the sim2real gap more than others for mechanical wing design, and Stocco
et al. (2022), which studies the e�ect of image corruptions and adversarial examples on the sim2real gap in
autonomous driving. However, no controlled and fine-grained studies of the e�ect of environmental properties
are done in these papers.

The related generalization gap In concurrent work, Xie et al. (2023) conducts a similar study on a
di�erent but related quantity, the generalization gap, which is the change in the performance of an agent
when environment properties are shifted from training to test, in either simulation or reality. For imitation
learning on a robotic manipulation task, the authors observe that new camera positions and table textures
lead to the largest generalization gap.

Standardization of AI testing & automated driving Automated driving addresses validation with a
collection of di�erent methodologies comprised of simulation, virtual testing, and real-world testing as well as
clear scenario catalogues. The scenarios to be chosen should be relevant to the automated driving system and
the relevant operational design domain and adequately cover a range of situations that are challenging for the
system; a detailed approach for regulations is, for example, defined in Inland Transport Committee (2022).
In particular, real-world testing is recommended for detecting issues that are not captured in simulation, i.e.
the sim2real gap.

3 Approach

In order to analyze the sim2real gap, we begin by constructing a rigorous definition. As stated previously, the
sim2real gap is the di�erence in the performances of a model when evaluated in the real world environment
and in the simulation environment.

The performance of a model varies depending on characteristics of the environment, such as the lighting
conditions, camera location, and object position. Therefore, when quantifying the sim2real gap, previous
works (Anderson et al., 2021; Kadian et al., 2020) hold many of these characteristics constant between the
real world and simulation, and we split those characteristics into two categories:

• A: (Approximately) Equalizable in the two environments. Some characteristics can be measured
with high accuracy in the real world and replicated in the simulator, such as the number of objects on
the table and camera location. Other characteristics, such as object material and light temperature,
can only be approximated by adjusting simulation parameters due to the structure of the simulator’s
physics or lighting model.

• B: Not equalizable in the two environments. These characteristics may not be measurable in the
real world with a high degree of accuracy or not controllable in the simulator, such as camera noise
and inaccuracies in the simulator’s lighting model, or even be unknown.

The sim2real gap is then a function of the characteristics in category A, marginalizing over those charac-
teristics in category B. Mathematically, let the ground truth expected losses of a model in the real world
environment when characteristics a œ A are set equal to a be Lreal(a = a) and in the simulation environment
be Lsim(a = a). Then, the sim2real gap is defined as the function:

g(a) = Lreal(a = a) ≠ Lsim(a = a) (1)
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In practice those losses are estimated using Monte Carlo after fixing the values of a, and so we implicitly
assume that the randomization is enough to cover the distribution of the characteristics in category B 1.

In our experiments, the characteristics in category A are the number of objects on the table, the geometry,
texture, and position of the objects and robot, the camera configuration, and the position, temperature, and
brightness of the light. Since the robot and camera set-ups are usually fixed before an agent is deployed, we
vary only the other characteristics during data collection. For diverse values of a, we collect RGBD images
in the real world and in simulation while holding the characteristics in category A equal to a in the two
environments. The data collection protocol is described further in the next section.

Given a task and model trained for that task, the real world images are used to estimate Lreal(a = a)
and the simulation images Lsim(a = a), resulting in estimates of the sim2real gap ĝ(a). Because some
characteristics in category A such as the texture of an object cannot be readily converted into numbers, we
convert a into hand-designed features f (such as whether there is a metallic object on the table) and instead
analyze the behavior of ĝ(f) as a function of f . By choosing a concise set of features that reflect the range of
category A characteristics that are varied during data collection, analyzing ĝ(f) leads to similar qualitative
results as analyzing ĝ(a). ĝ(f) is modeled using a statistical model with uncertainty, thereby accounting for
the stochasticity of the estimates and e�ect of characteristics in category B that are uncorrelated with those
in category A. If a certain feature is found to statistically significantly a�ect the sim2real gap ĝ, we may
conclude that both validation scenarios and algorithms to reduce the gap should take care to cover the full
range of that feature. More details are given in Section 5.1.

4 Dataset

In this section, we describe the real world and simulation environments (including how we equalize the
category A characteristics described in the previous section) and the procedure used to collect the data.

4.1 Environment

We create a robotic hand manipulation arena, consisting of a Franka Emika Panda robot (Franka Emika) on
a pedestal next to a table. Selected objects from the YCB dataset (Calli et al., 2017) are placed on the table
at various positions and orientations, possibly stacked on top of one another. This object set was selected
because it is popular in the robotics community, physical objects can be purchased, and textured meshes of
objects are available online. The robot is stationary and does not interact with any other object. We next
describe the physical and simulation environments; additional details can be found in Appendix A.2.

Physical space Figure 1a shows a complete picture of the physical environment. The table is rectangular
with blue metal legs, and the robot (which has a soft gripper (Soft Robotics)) is placed along one side on
a blue metal mount with its black control box adjacent to the mount. There is a power surge opposite the
robot on the table, blue metal posts at the corners on either side of the power surge, and a white tablecloth
on top of the table. The RGBD camera, Azure Kinect (kin), is placed on a tripod near one of the corners
of the table so that it has a clear view of the robot’s gripper and tabletop; this sort of third-person view is
common in the literature (Jangir et al., 2022). The camera position (relative to the center of the robot base)
and orientation were computed using hand-eye calibration (Horaud & Dornaika, 1995) in ROS. The room is
rectangular with white plaster walls, brown carpeting, and ambient fluorescent lighting, and we also have a
LED floor lamp with controllable brightness and temperature settings to further illuminate the scene from
one of two positions, either at the robot’s left or the robot’s right.

Simulation space We approximate the physical space in the MuJoCo simulator (Todorov et al., 2012)
using the robosuite (Zhu et al., 2020) package; an image is shown in Figure 1b, with the default OpenGL
renderer. Our simulation environment builds on robosuite’s single-arm manipulation environment with a
simulated Panda robot in a table arena. The table, robot, mount, control box, power surge, and posts were

1This assumption may not be true for camera artifacts if only one camera is available. Therefore, we view our results as
being conditional on the camera we use, as well as on the general robot manipulation set-up.
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(a) Physical (b) Simulation

Figure 1: Pictures of environments

scaled appropriately utilizing the sizes of the robot base in the physical space and in robosuite; their textures
and material properties were chosen from those available in robosuite to mimic the physical environment.
The camera FOV is set as 59 degrees, the same as the Azure Kinect, and its position was calculated by
scaling the camera position in the physical space; its orientation is copied over without any change. For
every possible brightness, temperature, and position setting of the lamp in the physical space, we find a
corresponding setting for a light in the simulator. Its position and direction is approximated from the
physical space and ambient, di�use, and specular components are tuned so that an image of an upside down
bowl looks similar to that in the physical space from the camera POV. Likewise, each YCB object mesh
was scaled using the sizes of the table in the physical space and simulation and the size of the object in the
physical environment; other material properties were chosen using Silicon Graphics, Inc. & Kilgard (1994).

4.2 Collection

The analysis dataset consists of pairs of RGBD images taken in the physical and simulation environments.
For di�erent pairs the YCB objects on the table, their positions and orientations, and the light position,
brightness, and temperature are randomized, whereas within a pair they are equal.

Specifically, we repeat the following process three times for N = 1, . . . , 10, where N is the total number of
objects on the table. Subject to the rules outlines in Appendix A.1,

• While there are fewer than N objects on the table in the physical environment:

– Sample an object O uniformly at random. If that object is no longer available for placement
(all instances are already on the table), redo.

– Compile a list L of objects already on the table that O can be stacked on; the list may be empty.
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– Let R denote the object that O is stacked on. If L is empty, set R = None. Otherwise, select
an object R from L, each with probability 0.1, or R = None with probability 1 ≠ 0.1|L|.

– If R ”= None, no more objects can be stacked on it.
– Uniformly randomly sample an orientation Q for O. If R = None, also uniformly randomly

sample a position P on the table for O. Place object O on the table; if it is not physically
possible, redo.

– Record O, R, Q, and P .

• For the lamp being on the left and right side of the robot and various temperature and brightness
(eighteen settings in total): using the Open3D (Zhou et al., 2018) Azure Kinect Recorder and MKV
Reader,

– Record 1 second RGBD video.
– Extract a single RGB image and corresponding depth from the video.

• Reset the simulation environment using the list of O, R, Q, and P . Q is converted to a quaternion
and P is scaled in the same manner as the size of the robot base.

• For each of the eighteen lamp settings:

– Adjust the simulation light properties to correspond to the current setting.
– Extract a single RGB image and corresponding depth by taking a single step in the environment.

This results in a dataset of size 3 ◊ 10 ◊ 18 = 540, where each data point consists of two RGBD images and
a list of objects, stackings, their orientations and positions, and lamp setting.

4.3 Feature selection

During data collection, the YCB objects on the table, their positions and orientations, and the light position,
brightness, and temperature were randomized. Instead of directly analyzing their e�ect on the sim2real gap,
we design more interpretable features that serve as proxies and analyze the e�ect of these features on the
gap. By selecting features that still capture information about the objects’ geometry and texture and the
light setting, the qualitative results of the analysis should not change. We compute the following features
(sorted by type) for each data point.

• Object geometry

– size: number of sampled objects, N

– boxes: percentage of sampled objects with a box shape
– cylinders: percentage of sampled objects that are cylindrical
– spheres: percentage of sampled objects that are spherical
– nonconvex: percentage of sampled objects that are nonconvex
– holes: average number of holes in the sampled objects

• Object texture

– red: percentage of sampled objects that are red
– orange: percentage of sampled objects that are orange
– yellow: percentage of sampled objects that are yellow
– green: percentage of sampled objects that are green
– blue: percentage of sampled objects that are blue
– purple: percentage of sampled objects that are purple
– black: percentage of sampled objects that are black
– white: percentage of sampled objects that are white
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– gray: percentage of sampled objects that are gray (metallic)

• Camera and light settings

– occluded: 1 if one sampled object occludes another from the camera POV, 0 otherwise
– lightleft: 1 if lamp is to the left of the robot from the camera POV, 0 otherwise
– lighttemp: temperature setting of the lamp on a scale of 1 ≠ 5, higher means whiter light
– lightbright: brightness setting of the lamp on a scale of 1 ≠ 5, higher means brighter

Further details on computing these features are found in Appendix A.3.

5 Analysis

We investigate the sim2real gap of popular, state-of-the-art models for three tasks, monocular depth estima-
tion, object detection, and image inpainting. We also probe the sensitivity of our results to the simulator’s
renderer and the model architecture for monocular depth estimation. Before discussing the results in each
task, we briefly describe the statistical model used in our analysis.

5.1 Statistical model

Suppose that we collect data according to the protocol in the previous section. Given a model, for each data
point i = 1, . . . , 30, j = 1, . . . , 18 we compute its features fij and the estimated gap ĝij = ¸

real
ij ≠ ¸

sim
ij , where

¸
real
ij is the loss of the model applied to the RGBD image from the physical environment and ¸

sim
ij the loss

of the model applied to the RGBD image from the simulation environment. Note that i corresponds to the
di�erent YCB object settings and j corresponds to the di�erent lamp settings.

To model the estimated gap as a function of a set of K features, we utilize a linear mixed model (Lindstrom
& Bates, 1988) where the fixed e�ects are the features and the Gaussian random e�ects correspond to the
thirty object settings. Specifically,

ĝij = – + —T fij + ”i + ‘ij , where ”i ≥ N (0, ‡
2
g) and ‘ij ≥ N (0, ‡

2
e) (2)

where — and fij are K-dimensional vectors. This model accounts for correlations between RGBD images
collected with the same table setting i and variations caused by quantities not explicitly included in the
model. Linear mixed e�ects models are optimized by maximum likelihood (Lindstrom & Bates, 1988) and
we use the statsmodels (Seabold & Perktold, 2010) package; sometimes the optimization fails to converge, in
which case we disregard the results. The optimization results are in the form of estimates —̂k and standard
errors of those estimates sd(—̂k) for feature k. Following common practice in the statistics literature, those
features for which —̂k is statistically significantly di�erent from zero, i.e. with large z-score zk = |—̂k|/sd(—̂k)
and small p-value, are identified.

For each computed feature, we consider both the case where it is the only feature in the linear mixed e�ects
model and the case where it is one of several features. If it is statistically significantly di�erent from zero, in
the former case we may conclude it a�ects the sim2real gap on average, while in the latter we may conclude
it a�ects the sim2real gap conditional on the other features having certain values.

5.2 Monocular depth estimation

The first task is depth estimation from a RGB image, used in robotics for visual servoing. We study the
DPT-Hybrid model (Ranftl et al., 2021) from MiDaS (Ranftl et al., 2022), which has good trade-o� between
speed and performance. The loss is the root normalized mean squared error of the per-pixel predictions of
the reciprocal of the depth, after the predictions have been aligned to have similar scale and shift to the
ground truth (Ranftl et al., 2022). 2

2To normalize, we divide by the square of the mean of the reciprocal of the ground truth depth. Normalization deals with
any scale di�erences between the simulation and the physical environment.
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The average gap is negative; that is, evaluating the model on simulation images overestimates the loss on
real world images. We first consider for each feature, the case where it is the lone fixed e�ect. Lightleft has
a statistically significant (p-value < 0.1%) positive e�ect on the gap; a bar chart of the predicted gap as a
function of the feature with a 95% confidence interval is shown in Figure 2a, overlaid with a scatterplot of
the data. If the lamp is on the same side as the camera, the gap increases but decreases in magnitude, i.e.
the over-estimation of the loss by the simulation environment becomes a slight under-estimation. Lighttemp
has a statistically significant (p-value 0.9%) positive e�ect on the gap; the corresponding bar chart of the
predicted gap as a function of the feature is shown in Figure 2b. If the lamp temperature increases, the gap
decreases in magnitude, i.e. the over-estimation of the loss by the simulation environment improves. All
optimization results are shown in Appendix B.

(a) MiDaS DPT-Hybrid model, lightleft (b) MiDaS DPT-Hybrid model, lighttemp

(c) MiDaS CNN model, size (d) MiDaS CNN model, lightbright

Figure 2: For the task of monocular depth estimation with the default OpenGL renderer, plots of the
predicted gap (with 95% confidence interval and scatterplot of the data overlaid) as a function of a feature
that is found to statistically significantly a�ect the gap when it is the only fixed e�ect in a linear mixed
model. For better visualization, we use bar charts when the corresponding features have only a few possible
values and the losses have been multiplied by 1000.

Ablations To investigate how the conclusions may be a�ected by the experimental design choices, we also
study 1) the original CNN model from MiDaS and 2) the DPT-Hybrid model under the NVISII renderer
(Morrical et al., 2020), which utilizes ray-tracing.

For the CNN model, the average gap is instead positive but has greater magnitude than the average gap for
the DPT-Hybrid model; this indicates that the DPT-Hybrid is more robust than the CNN model to domain
shifts. When each factor is the lone fixed e�ect, size has a positive e�ect on the gap (p-value 2%), i.e. more
objects on the table increases the magnitude of the gap; a plot of the predicted gap as a function of the
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feature with a 95% confidence interval is shown in Figure 2c, overlaid with a scatterplot of the data. On the
other hand, lightbright has a negative e�ect on the gap (p-value < 0.1%), i.e. having the lamp in the same
area as the camera decreases the magnitude of the gap; the bar chart of the predicted gap as a function of
the feature is shown in Figure 2d.

Next we consider groups of fixed e�ects/features by type. When there are only features describing the camera
and light, lightbright has a negative e�ect on the gap (p-value < 0.1%). Figure 3 plots the predicted gap as a
function of the light brightness with 95% confidence intervals, after fixing the other features at two di�erent
values seen in the dataset; changing those values do not seem to have a noticeable qualitative e�ect on the
trend, only on the prediction magnitudes.

For the DPT-Hybrid model with the NVISII renderer, lightleft and lighttemp a�ect the gap, with very similar
e�ect estimates and p-values to those for the same model with the default OpenGL renderer. However, yellow
now has a statistically significant positive e�ect on the gap (p-value 3.1%); a plot of the predicted gap as a
function of the feature with a 95% confidence interval is shown in Figure 4a, overlaid with a scatterplot of the
data. Similar plots for lightleft and lighttemp are shown in Figures 4b and 4c. Overall, the light properties
are more relevant for the sim2real gap in all cases, as the p-values for those features are smaller than those
of the other statistically significant features.

(a) occluded: 0, lightleft: 0, lighttemp: 5 (b) occluded: 1, lightleft: 1, lighttemp: 1

Figure 3: For the MiDaS CNN model with the default OpenGL renderer, bar charts of the predicted gap
(with 95% confidence interval) as a function of the statistically significant feature lightbright when only
camera and light features are included. The other features have been fixed at certain values seen in the
dataset. As above, the losses have been multiplied by 1000.

5.3 Object detection

The next task is object detection, which is utilized in robotics for visual understanding of the robot’s
surroundings. We study the state-of-the-art EVA model (Fang et al., 2022) that is fine-tuned on the LVIS
dataset, because its categories include most of the YCB objects we selected. This model produces object
category and bounding box proposals. Since we cannot obtain ground truth bounding boxes in the exact
manner of the LVIS dataset, we define the loss as the percentage of the N sampled objects for which no
proposal has the same category.

As in the previous subsection, the average gap is negative, and we first consider the cases where there is a
single fixed e�ect/feature. Holes appears to have a positive e�ect on the gap (p-value 0.7%); that is, more
holes in the objects reduces the overestimation of the loss. The same is true of more gray/metallic objects
(p-value 1.6%), but more red objects on the table has a negative e�ect on the gap (p-value < 0.1%). Figures
5a – 5c plot the predicted gap as a function of each of these features with 95% confidence intervals and a
scatterplot of the data overlaid.
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(a) yellow (b) lightleft

(c) lighttemp

Figure 4: For the MiDaS DPT-Hybrid model with the NVISII renderer, plots of the predicted gap (with
95% confidence interval and scatterplot of the data overlaid) as a function of a feature that is found to
statistically significantly a�ect the gap when it is the only fixed e�ect in a linear mixed model. As above,
the losses have been multiplied by 1000.

Next we consider groups of fixed e�ects/features by type. When there are only features describing the object
geometries, boxes, spheres, nonconvex, and holes all have statistically significant (p-value < 0.1%) positive
e�ects on the gap. Figure 6 plots the predicted gap as a function of holes with 95% confidence intervals, after
fixing the other features at values seen in the dataset 3. There does not seem to be a qualitative di�erence
in the trends. However, it appears that the uncertainty in the predicted gap is lower in the second subfigure
especially when holes is small, as in most of the dataset; this is not surprising since the number of objects
on the table is larger. When there are only factors describing the object textures 4, red has a statistically
significant (p-value 0.8%) negative e�ect on the gap. When there are only factors describing the camera and
light, there are no conclusions that can be drawn. Overall, we may conclude that the object geometries and
colors a�ect the sim2real gap in object detection and not the camera or light properties. All optimization
results are shown in Appendix B.

5.4 Image inpainting

The final task is image inpainting, which is helpful in robotics when there is occlusion by nuisance objects; we
study the popular LaMa model (Suvorov et al., 2021). The loss is the expected squared error of a predicted

3We do not create the same figures for the other significant features as their values create restrictions on those of other
features.

4We exclude white to avoid multicollinearity.
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(a) holes (b) gray

(c) red (d) white

Figure 5: Line plots of the predicted gap (with 95% confidence interval and scatterplot of the data overlaid)
as a function of a feature that is found to statistically significantly a�ect the gap when it is the only fixed
e�ect in a linear mixed model. (a)-(c) are for object detection and (d) is for image inpainting, with the losses
multiplied by 1000.

pixel when some in the image are randomly masked. In particular, for each data point, Lreal is estimated
as the MSE of the pixel predictions, averaged over 10 random masks on the RGB image from the physical
environment; Lsim is estimated similarly. The masks are sets of rectangles and polygonal chains with large
width, making simple interpolation ine�ective.

The average gap is positive, implying that the model performs worse on real world images than on simulation
images. When there is a single fixed e�ect/factor, white has a statistically significant (p-value 0.5%) positive
e�ect. Figure 5d plots the predicted gap as a function of white with a 95% confidence interval and a
scatterplot of the data overlaid. As with object detection, only the object textures a�ect the sim2real gap.
The optimization results are shown in Appendix B.

5.5 Discussion

To sum up, for a SOTA monocular depth estimation model the simulation environment underestimates the
performance, which is ameliorated by placing the lamp near the camera and increasing the temperature.
When a di�erent renderer is used, increasing the number of yellow objects also ameliorates the gap. When
an older model is used, the simulation environment overestimates the performance, which is exacerbated
by increasing the number of objects and ameliorated by increasing the brightness of the lamp. For object
detection the simulation environment also underestimates the model performance, which is instead exacer-
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(a) size: 3, boxes, cylinders, spheres: 0,

nonconvex: 1

(b) size: 8, boxes: 1/8, cylinders: 0,

spheres: 1/4, nonconvex: 3/4

Figure 6: For object detection with the default OpenGL renderer, line plots of the predicted gap (with 95%
confidence interval) as a function of the statistically significant feature holes when only object geometry and
layout features are included. The other features have been fixed at certain values seen in the dataset.

bated by more red objects and diminished by more holes in the objects. For image inpainting the simulation
environment overestimates the model performance, which is exacerbated by more white objects.

In general, light properties have a greater impact on depth estimation but object properties have a greater
impact on object detection and image inpainting. Therefore, when validating depth estimation models it is
important to consider diverse lighting conditions and have an accurate lighting model, while when validating
object detection models it is important to consider diverse and accurate object geometries and textures.
The behavior of the sim2real gap appears to be highly task-dependent, explaining common practices such
as hand-selecting variables for domain randomization.

6 Conclusion

In this work, we conducted a systematic investigation of factors that impact the sim2real gap in computer
vision for robotic manipulation, focusing on popular models for monocular depth estimation, object detection,
and image inpainting. After creating a replica of the physical environment in robosuite (Zhu et al., 2020) that
consists of objects from the YCB dataset (Calli et al., 2017) on a table and a Panda manipulator (Franka
Emika), we collected a dataset of RGBD images with diverse objects and lighting conditions. Statistical
analyses show that light properties a�ect the gap more than object geometry and texture in monocular depth
estimation while the opposite is true in object detection and image inpainting. A natural extension would
be to study both perception and control by considering simple manipulation tasks such as pick-and-place
and introducing physics-related factors such as object weight and material friction.

Broader Impact Statement

The conclusions in this paper can inform the creation of any robotic system that incorporates computer
vision. As such, our work does not have direct societal impact, but those systems may either have positive
impact or negative impact.
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